Part Number Hot Search : 
2KA16 0000X 680MZ LVC1G IC16F AN1293 SD204 C74HC3
Product Description
Full Text Search
 

To Download MPC860PZQ80D4R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? freescale semiconductor, inc., 2001?2007. all rights reserved. freescale semiconductor technical data this hardware specification cont ains detailed information on power considerations, dc/ac electrical characteristics, and ac timing specifications for the mpc860 family. to locate published errata or updates for this document, refer to the mpc860 product summary page on our website listed on the back cover of this document or, contact your local freescale sales office. mpc860ec rev. 8, 08/2007 contents 1. overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. maximum tolerated ratings . . . . . . . . . . . . . . . . . . . 7 4. thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . 8 5. power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6. dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7. thermal calculation and measurement . . . . . . . . . . 12 8. layout practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 9. bus signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15 10. ieee 1149.1 electrical specifications . . . . . . . . . . . 41 11. cpm electrical characteristics . . . . . . . . . . . . . . . . . 43 12. utopia ac electrical specifications . . . . . . . . . . . 65 13. fec electrical characteristics . . . . . . . . . . . . . . . . . 67 14. mechanical data and ordering information . . . . . . . 70 15. document revision history . . . . . . . . . . . . . . . . . . . 76 mpc860 powerquicc? family hardware specifications
mpc860 powerquicc? family hardware specifications, rev. 8 2 freescale semiconductor overview 1overview the mpc860 power quad integrated communications controller (powerquicc?) is a versatile one-chip integrated microprocessor and peripheral combination de signed for a variety of controller applications. it particularly excels in communications and networking systems. the powerquicc unit is referred to as the mpc860 in this hardware specification. the mpc860 implements power architecture? tec hnology and contains a superset of freescale?s mc68360 quad integrated communications controller (quicc), referred to here as the quicc, risc communications proccessor module (cpm). the cpu on the mpc860 is a 32-bit core built on power architecture technology that incorporates memory ma nagement units (mmus) a nd instruction and data caches.. the cpm from the mc68360 quicc has been e nhanced by the addition of the inter-integrated controller (i 2 c) channel. the memory controller has been enhanced, enabling the mpc860 to support any type of memory, including high-performance memories and new types of drams. a pcmcia socket controller supports up to two sockets. a r eal-time clock has also been integrated. table 1 shows the functionality supported by the mpc860 family. table 1. mpc860 family functionality part cache (kbytes) ethernet atm scc reference 1 1 supporting documentation for these devices refers to the following: 1. mpc860 powerquicc family user?s manual (mpc860um, rev. 3) 2. mpc855t user?s manual (mpc855tum, rev. 1) instruction cache data cache 10t 10/100 mpc860de 4 4 up to 2 ? ? 2 1 mpc860dt 4 4 up to 2 1 yes 2 1 mpc860dp 16 8 up to 2 1 yes 2 1 mpc860en 4 4 up to 4 ? ? 4 1 mpc860sr 4 4 up to 4 ? yes 4 1 mpc860t 4 4 up to 4 1 yes 4 1 mpc860p 16 8 up to 4 1 yes 4 1 mpc855t 4411y e s1 2
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 3 features 2features the following list summarizes the key mpc860 features: ? embedded single-issue, 32-bit core (implementing the power architecture technology) with thirty-two 32-bit general-purpose registers (gprs) ? the core performs branch prediction with conditional prefetch without conditional execution. ? 4- or 8-kbyte data cache and 4- or 16-kbyte instruction cache (see table 1 ) ? 16-kbyte instruction caches are four-way, set-associative with 256 sets; 4-kbyte instruction caches are two-way, set-associative with 128 sets. ? 8-kbyte data caches are two-way, set-associative with 256 sets; 4-kbyte data caches are two-way, set-associative with 128 sets. ? cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks. ? caches are physically addressed, implement a least recently used (lru) replacement algorithm, and are lockable on a cache block basis. ? mmus with 32-entry tlb, fully-associative instruction, and data tlbs ? mmus support multiple page sizes of 4-, 16-, and 512-kbytes, and 8-mbytes; 16 virtual address spaces and 16 protection groups ? advanced on-chip-emulation debug mode ? up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits) ? 32 address lines ? operates at up to 80 mhz ? memory controller (eight banks) ? contains complete dynamic ram (dram) controller ? each bank can be a chip select or ras to support a dram bank. ? up to 15 wait states programmable per memory bank ? glueless interface to dram, simms, sram, eprom, flash eprom, and other memory devices ? dram controller programmable to support most size and speed memory interfaces ? four cas lines, four we lines, and one oe line ? boot chip-select available at reset (options for 8-, 16-, or 32-bit memory) ? variable block sizes (32 kbytes to 256 mbytes) ? selectable write protection ? on-chip bus arbitration logic ? general-purpose timers ? four 16-bit timers or two 32-bit timers ? gate mode can enable/disable counting ? interrupt can be masked on reference match and event capture.
mpc860 powerquicc? family hardware specifications, rev. 8 4 freescale semiconductor features ? system integration unit (siu) ? bus monitor ? software watchdog ? periodic interrupt timer (pit) ? low-power stop mode ? clock synthesizer ? decrementer, time base, and real-time clock (rtc) ? reset controller ? ieee 1149.1? std. test access port (jtag) ? interrupts ? seven external interrupt request (irq) lines ? 12 port pins with interrupt capability ? 23 internal interrupt sources ? programmable priority between sccs ? programmable highest priority request ? 10/100 mbps ethernet support, fully compliant with the ieee 802.3u? standard (not available when using atm over utopia interface) ? atm support compliant with atm forum uni 4.0 specification ? cell processing up to 50?70 mbps at 50-mhz system clock ? cell multiplexing/demultiplexing ? support of aal5 and aal0 protocols on a per-vc basis. aal0 support enables oam and software implementation of other protocols. ? atm pace control (apc) scheduler, providing dir ect support for constant bit rate (cbr) and unspecified bit rate (ubr) and providing control mechanisms enabling software support of available bit rate (abr) ? physical interface support for utopia (10/100-mbps is not supported with this interface) and byte-aligned serial (for example, t1/e1/adsl) ? utopia-mode atm supports level-1 master with cell-level handshake, multi-phy (up to four physical layer devices), connection to 25-, 51- , or 155-mbps framers, and utopia/system clock ratios of 1/2 or 1/3. ? serial-mode atm connection supports transmission convergence (tc) function for t1/e1/adsl lines, cell delineation, cell pa yload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (hec) generation, checking, and statistics. ? communications processor module (cpm) ? risc communications processor (cp) ? communication-specific commands (for example, graceful stop transmit , enter hunt mode , and restart transmit ) ? supports continuous mode transmission and reception on all serial channels
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 5 features ? up to 8 kbytes of dual-port ram ? 16 serial dma (sdma) channels ? three parallel i/o registers with open-drain capability ? four baud-rate generators (brgs) ? independent (can be tied to any scc or smc) ? allows changes during operation ? autobaud support option ? four serial communications controllers (sccs) ? ethernet/ieee 802.3? standard optional on scc1?4, supporting full 10-mbps operation (available only on specially programmed devices) ? hdlc/sdlc (all channels supported at 2 mbps) ? hdlc bus (implements an hdlc-based local area network (lan)) ? asynchronous hdlc to support point-to-point protocol (ppp) ? appletalk ? universal asynchronous receiver transmitter (uart) ? synchronous uart ? serial infrared (irda) ? binary synchronous communication (bisync) ? totally transparent (bit streams) ? totally transparent (frame-based with optional cyclic redundancy check (crc)) ? two smcs (serial management channels) ? uart ? transparent ? general circuit interface (gci) controller ? can be connected to the time-division multiplexed (tdm) channels ? one spi (serial peripheral interface) ? supports master and slave modes ? supports multimaster operation on the same bus ? one i 2 c (inter-integrated circuit) port ? supports master and slave modes ? multiple-master environment support ? time-slot assigner (tsa) ? allows sccs and smcs to run in multiplexed and/or non-multiplexed operation ? supports t1, cept, pcm highway, isdn basic rate, isdn primary rate, user defined ? 1- or 8-bit resolution ? allows independent transmit and receive r outing, frame synchronization, and clocking
mpc860 powerquicc? family hardware specifications, rev. 8 6 freescale semiconductor features ? allows dynamic changes ? can be internally connected to six se rial channels (four sccs and two smcs) ? parallel interface port (pip) ? centronics interface support ? supports fast connection between compatible ports on the mpc860 or the mc68360 ? pcmcia interface ? master (socket) interface, release 2.1 compliant ? supports two independent pcmcia sockets ? supports eight memory or i/o windows ? low power support ? full on?all units fully powered ? doze?core functional units disabled except time base decrementer, pll, memory controller, rtc, and cpm in low-power standby ? sleep?all units disabled except rtc and pit, pll active for fast wake up ? deep sleep?all units disabled including pll except rtc and pit ? power down mode?all units powered down except pll, rtc, pit, time base, and decrementer ? debug interface ? eight comparators: four operate on instruction address, two operate on data address, and two operate on data ? supports conditions: = <> ? each watchpoint can generate a break-point internally. ? 3.3-v operation with 5-v ttl compatibility except extal and extclk ? 357-pin ball grid array (bga) package
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 7 maximum tolerated ratings 3 maximum tolerated ratings this section provides the maximum tolerated vo ltage and temperature ranges for the mpc860. table 2 provides the maximum ratings. this device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be take n to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circ uit. reliability of operation is enhanced if unused inputs are tied to an appropriate logic vo ltage level (for example, either gnd or v dd ). table 2. maximum tolerated ratings (gnd = 0 v) rating symbol value unit supply voltage 1 1 the power supply of the device must start its ramp from 0.0 v. v ddh ?0.3 to 4.0 v v ddl ?0.3 to 4.0 v kapwr ?0.3 to 4.0 v v ddsyn ?0.3 to 4.0 v input voltage 2 2 functional operating conditions are provided with the dc electrical specifications in ta ble 6 . absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. stress beyond those listed may affect device reliability or cause permanent damage to the device. caution : all inputs that tolerate 5 v cannot be more than 2.5 v greater than the supply voltage. this restriction applies to power-up and normal operation (that is, if the mpc860 is unpowered, voltage greater than 2.5 v must not be applied to its inputs). v in gnd ? 0.3 to v ddh v temperature 3 (standard) 3 minimum temperatures are guaranteed as ambient temperature, t a . maximum temperatures are guaranteed as junction temperature, t j . t a(min) 0 c t j(max) 95 c temperature 3 (extended) t a(min) ?40 c t j(max) 95 c storage temperature range t stg ?55 to 150 c
mpc860 powerquicc? family hardware specifications, rev. 8 8 freescale semiconductor thermal characteristics figure 1 shows the undershoot and overshoot voltages at the interface of the mpc8 60. figure 1. undershoot/overshoot voltage for v ddh and v ddl 4 thermal characteristics table 3. package description package designator package code (case no.) package description zp 5050 (1103-01) pbga 357 25*25*0.9p1.27 zq/vr 5058 (1103d-02) pbga 357 25*25*1.2p1.27 gnd gnd ? 0.3 v gnd ? 0.7 v not to exceed 10% v ddh /v ddl + 20% v ddh /v ddl v ddh /v ddl + 5% of t interface 1 1. t interface refers to the clock period associated with the bus clock interface. v ih v il note:
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 9 thermal characteristics table 4 shows the thermal characteristics for the mpc860. table 4. mpc860 thermal resistance data rating environment symbol zp mpc860p zq / vr mpc860p unit mold compound thickness 0.85 1.15 mm junction-to-ambient 1 1 junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance. natural convection single-layer board (1s) r ja 2 2 per semi g38-87 and jedec jesd51-2 with the single-layer board horizontal. 34 34 ?c/w c/w four-layer board (2s2p) r jma 3 3 per jedec jesd51-6 with the board horizontal. 22 22 airflow (200 ft/min) single-layer board (1s) r jma 3 27 27 four-layer board (2s2p) r jma 3 18 18 junction-to-board 4 4 thermal resistance between the die and the printed-circuit board per jedec jesd51-8. board temperature is measured on the top surface of the board near the package. r jb 14 13 junction-to-case 5 5 indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (mil spec-883 method 1012.1) with the cold plate temperature used for the case temperature. for exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance. r jc 68 junction-to-package top 6 6 thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per jedec jesd51-2. natural convection jt 22
mpc860 powerquicc? family hardware specifications, rev. 8 10 freescale semiconductor power dissipation 5 power dissipation table 5 provides power dissipation information. the modes are 1:1, where cpu and bus speeds are equal, and 2:1, where cpu frequency is twice the bus speed. note values in table 5 represent v ddl -based power dissipation and do not include i/o power dissipation over v ddh . i/o power dissipation varies widely by application due to buffer current, depending on external circuitry. 6 dc characteristics table 6 provides the dc electrical characteristics for the mpc860. table 5. power dissipation (p d ) die revision frequency (mhz) typical 1 1 typical power dissipation is measured at 3.3 v. maximum 2 2 maximum power dissipation is measured at 3.5 v. unit d.4 (1:1 mode) 50 656 735 mw 66 tbd tbd mw d.4 (2:1 mode) 66 722 762 mw 80 851 909 mw table 6. dc electrical specifications characteristic symbol min max unit operating voltage at 40 mhz or less v ddh , v ddl , v ddsyn 3.0 3.6 v kapwr (power-down mode) 2.0 3.6 v kapwr (all other operating modes) v ddh ? 0.4 v ddh v operating voltage greater than 40 mhz v ddh , v ddl , kapwr, v ddsyn 3.135 3.465 v kapwr (power-down mode) 2.0 3.6 v kapwr (all other operating modes) v ddh ? 0.4 v ddh v input high voltage (all inputs except extal and extclk) v ih 2.0 5.5 v input low voltage 1 v il gnd 0.8 v extal, extclk input high voltage v ihc 0.7 (v ddh )v ddh + 0.3 v input leakage current, v in = 5.5 v (except tms, trst , dsck, and dsdi pins) i in ? 100 a
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 11 dc characteristics input leakage current, v in = 3.6 v (except tms, trst , dsck, and dsdi pins) i in ?1 0 a input leakage current, v in = 0 v (except tms, trst , dsck, and dsdi pins) i in ?1 0 a input capacitance 2 c in ?2 0p f output high voltage, i oh = ?2.0 ma, v ddh =3.0v (except xtal, xfc, and open-drain pins) v oh 2.4 ? v output low voltage i ol = 2.0 ma, clkout i ol = 3.2 ma 3 i ol = 5.3 ma 4 i ol = 7.0 ma, txd1/pa14, txd2/pa12 i ol = 8.9 ma, ts , ta , tea , bi , bb , hreset , sreset v ol ?0 . 5v 1 v il (max) for the i 2 c interface is 0.8 v rather than the 1.5 v as specified in the i 2 c standard. 2 input capacitance is periodically sampled. 3 a(0:31), tsiz0/reg , tsiz1, d(0:31), dp(0:3)/irq (3:6), rd/wr , burst , rsv /irq2 , ip_b(0:1)/iwp(0:1)/vfls(0:1), ip_b2/iois16_b/at2, ip_b3/iwp2/vf2, ip_b4/lwp0/vf0, ip_b5/lwp1/vf1, ip_b6/dsdi/at0, ip_b7/ptr/at3, rxd1/pa15, rxd2/pa13, l1txdb/pa11, l1rxdb/pa10, l1txda/pa9, l1rxda/pa8, tin1/l1rclka/brgo1/clk1/pa7, brgclk1/tout1 /clk2/pa6, tin2/l1tclka/brgo2/clk3/pa5, tout2 /clk4/pa4, tin3/brgo3/clk5/pa3, brgclk2/ l1rclkb/tout3 /clk6/pa2, tin4/brgo4/clk7/pa1, l1tclkb/tout4 /clk8/pa0, rejct1 /spisel /pb31, spiclk/ pb30,spimosi/pb29, brgo4/spimiso/pb28, brgo1/i2csda/pb27, brgo2/i2cscl/pb26, smtxd1/pb25, smrxd1/ pb24, smsyn1 /sdack1 /pb23, smsyn2 /sdack2 /pb22, smtxd2/l1clkob/pb21, smrxd2/l1clkoa/pb20, l1st1/ rts1 /pb19, l1st2/rts2 /pb18, l1st3/l1rqb /pb17, l1st4/l1rqa /pb16, brgo3/pb15, rstrt1 /pb14, l1st1/rts1 / dreq0 /pc15, l1st2/rts2 /dreq1 /pc14, l1st3/l1rqb /pc13, l1st4/l1rqa /pc12, cts1 /pc11, tgate1 /cd1 /pc10, cts2 /pc9, tgate2 /cd2 /pc8, sdack2 /l1tsyncb/pc7, l1rsyncb/pc6, sdack1 /l1tsynca/pc5, l1rsynca/pc4, pd15, pd14, pd13, pd12, pd11, pd10, pd9, pd8, pd5, pd6, pd7, pd4, pd3, mii_mdc, mii_tx_er, mii_en, mii_mdio, and mii_txd[0:3] 4 bdip /gpl_b (5), br , bg , frz/irq6 , cs (0:5), cs (6)/ce (1)_b, cs (7)/ce (2)_b, we0 /bs _b0/iord , we1 /bs _b1/iowr , we2 /bs _b2/pcoe , we3 /bs _b3/pcwe , bs _a(0:3), gpl_a0 /gpl_b0 , oe /gpl_a1 /gpl_b1 , gpl_a (2:3)/gpl_b (2:3)/ cs (2:3), upwaita/gpl_a4 , upwaitb/gpl_b4 , gpl_a5 , ale_a, ce 1_a, ce 2_a, ale_b/dsck/at1, op(0:1), op2/modck1/sts , op3/modck2/dsdo, and baddr(28:30) table 6. dc electrical specifications (continued) characteristic symbol min max unit
mpc860 powerquicc? family hardware specifications, rev. 8 12 freescale semiconductor thermal calculation and measurement 7 thermal calculation and measurement for the following discussions, p d = (v dd i dd ) + pi/o, where pi/o is the power dissipation of the i/o drivers. 7.1 estimation with junction-to-ambient thermal resistance an estimation of the chip junction temperature, t j , in oc can be obtained from the equation: t j = t a + (r ja p d ) where: t a = ambient temperature (oc) r ja = package junction-to-ambient thermal resistance (oc/w) p d = power dissipation in package the junction-to-ambient thermal resistance is an i ndustry standard value which provides a quick and easy estimation of thermal performance. however, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity t j ? t a ) are possible. 7.2 estimation with junction-to-case thermal resistance historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: r ja = r jc + r ca where: r ja = junction-to-ambient thermal resistance (oc/w) r jc = junction-to-case thermal resistance (oc/w) r ca = case-to-ambient thermal resistance (oc/w) r jc is device related and cannot be influenced by the user. the user adjusts the thermal environment to affect the case-to-ambient thermal resistance, r ca . for instance, the user can change the airflow around the device, add a heat sink, change the mounting arra ngement on the printed-circ uit board, or change the thermal dissipation on the printed-circuit board surrounding the device. this thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. for most packages, a better model is required. 7.3 estimation with junction-to-board thermal resistance a simple package thermal model which has dem onstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-boa rd and a junction-to-case thermal resistance. the junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. the junction-to-board thermal resistance describes the thermal performance when most of the he at is conducted to the printed-circuit board. it has been observed that the thermal performance of most plastic packages, especially pbga packages, is strongly dependent on the board temperature; see figure 2 .
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 13 thermal calculation and measurement figure 2. effect of board temperature rise on thermal behavior if the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation: t j = t b + (r jb p d ) where: r jb = junction-to-board thermal resistance (oc/w) t b = board temperature (oc) p d = power dissipation in package if the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. for this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plan e) and by attaching the thermal balls to the ground plane. 7.4 estimation using simulation when the board temperature is not known, a thermal s imulation of the application is needed. the simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation. 7.5 experimental determination to determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter ( jt ) can be used to determine the junction temperature with a measurement of the temperature at the top cente r of the package case using the following equation: t j = t t + ( jt p d ) board temperature rise above ambient divided by package power junction temperature rise above ambient divided by package power
mpc860 powerquicc? family hardware specifications, rev. 8 14 freescale semiconductor layout practices where: jt = thermal characterization parameter t t = thermocouple temperature on top of package p d = power dissipation in package the thermal characterization parameter is measured per jedec jesd51-2 specification using a 40 gauge type t thermocouple epoxied to the top center of th e package case. the thermocouple should be positioned so that the thermocouple junction rests on the package. a small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extendi ng from the junction. the thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. 7.6 references semiconductor equipment and materials international (415) 964-5111 805 east middlefield rd. mountain view, ca 94043 mil-spec and eia/jesd (jedec) specifications 800-854-7179 or (available from global engineering documents) 303-397-7956 jedec specifications http://www.jedec.org 1. c.e. triplett and b. joiner, ?an experimental characterization of a 272 pbga within an automotive engine controller module,? proceedings of semitherm, san diego, 1998, pp. 47 ? 54. 2. b. joiner and v. adams, ?measurement and simulation of junction to board thermal resistance and its application in thermal modeling,? proceedings of semitherm, san diego, 1999, pp. 212 ? 220. 8 layout practices each v dd pin on the mpc860 should be provided with a low-impedance path to the board?s supply. each gnd pin should likewise be provided with a low-impedance path to ground. the power supply pins drive distinct groups of logic on the chip. the v dd power supply should be bypassed to ground using at least four 0.1 f-bypass capacitors located as close as po ssible to the four sides of the package. the capacitor leads and associated printed circ uit traces connecting to chip v dd and gnd should be kept to less than half an inch per capacitor lead. a four-layer board employing two inner layers as v cc and gnd planes is recommended. all output pins on the mpc860 have fast rise and fall times. printed circuit (pc) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. this recommendation particularly a pplies to the address and data buses. maximum pc trace lengths of 6 inches are recommended. capacita nce calculations should consider all device loads as well as parasitic capacitances due to the pc traces. attention to proper pcb la yout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the v cc and gnd circuits. pull up all unused inputs or signals that will be inputs during reset. special care should be taken to minimize the noise levels on the pll supply pins.
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 15 bus signal timing 9 bus signal timing table 7 provides the bus operation timing for the mpc860 at 33, 40, 50, and 66 mhz. the maximum bus speed supported by the mpc860 is 66 mhz. higher-speed parts must be operated in half-speed bus mode (for example, an mpc860 used at 80 mhz must be configured for a 40-mhz bus). the timing for the mpc860 bus shown assumes a 50-pf load for maximum delays and a 0-pf load for minimum delays. table 7. bus operation timings num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max b1 clkout period 30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns b1a extclk to clkout phase skew (extclk > 15 mhz and mf <= 2) ?0.90 0.90 ?0.90 0.90 ?0.90 0.90 ?0.90 0.90 ns b1b extclk to clkout phase skew (extclk > 10 mhz and mf < 10) ?2.30 2.30 ?2.30 2.30 ?2.30 2.30 ?2.30 2.30 ns b1c clkout phase jitter (extclk > 15 mhz and mf <= 2) 1 ?0.60 0.60 ?0.60 0.60 ?0.60 0.60 ?0.60 0.60 ns b1d clkout phase jitter 1 ?2.00 2.00 ?2.00 2.00 ?2.00 2.00 ?2.00 2.00 ns b1e clkout frequency jitter (mf < 10) 1 ? 0.50 ? 0.50 ? 0.50 ? 0.50 % b1f clkout frequency jitter (10 < mf < 500) 1 ? 2.00 ? 2.00 ? 2.00 ? 2.00 % b1g clkout frequency jitter (mf > 500) 1 ? 3.00 ? 3.00 ? 3.00 ? 3.00 % b1h frequency jitter on extclk 2 ? 0.50 ? 0.50 ? 0.50 ? 0.50 % b2 clkout pulse width low 12.12 ? 10.00 ? 8.00 ? 6.06 ? ns b3 clkout width high 12.12 ? 10.00 ? 8.00 ? 6.06 ? ns b4 clkout rise time 3 ? 4.00 ? 4.00 ? 4.00 ? 4.00 ns b5 33 clkout fall time 3 ? 4.00 ? 4.00 ? 4.00 ? 4.00 ns b7 clkout to a(0:31), baddr(28:30), rd/wr , burst , d(0:31), dp(0:3) invalid 7.58 ? 6.25 ? 5.00 ? 3.80 ? ns b7a clkout to tsiz(0:1), reg , rsv , at(0:3), bdip , ptr invalid 7.58 ? 6.25 ? 5.00 ? 3.80 ? ns b7b clkout to br , bg , frz, vfls(0:1), vf(0:2) iwp(0:2), lwp(0:1), sts invalid 4 7.58 ? 6.25 ? 5.00 ? 3.80 ? ns b8 clkout to a(0:31), baddr(28:30) rd/wr , burst , d(0:31), dp(0:3) valid 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns b8a clkout to tsiz(0:1), reg , rsv , at(0:3) bdip , ptr valid 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns b8b clkout to br , bg , vfls(0:1), vf(0:2), iwp(0:2), frz, lwp(0:1), sts valid 4 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
mpc860 powerquicc? family hardware specifications, rev. 8 16 freescale semiconductor bus signal timing b9 clkout to a(0:31), baddr(28:30), rd/wr , burst , d(0:31), dp(0:3), tsiz(0:1), reg , rsv , at(0:3), ptr high-z 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns b11 clkout to ts , bb assertion 7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns b11a clkout to ta , bi assertion (when driven by the memory controller or pcmcia interface) 2.50 9.25 2.50 9.25 2.50 9.25 2.50 9.75 ns b12 clkout to ts , bb negation 7.58 14.33 6.25 13.00 5.00 11.75 3.80 8.54 ns b12a clkout to ta , bi negation (when driven by the memory controller or pcmcia interface) 2.50 11.00 2.50 11.00 2.50 11.00 2.50 9.00 ns b13 clkout to ts , bb high-z 7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns b13a clkout to ta , bi high-z (when driven by the memory controller or pcmcia interface) 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns b14 clkout to tea assertion 2.50 10.00 2.50 10.00 2.50 10.00 2.50 9.00 ns b15 clkout to tea high-z 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns b16 ta , bi valid to clkout (setup time) 9.75 ? 9.75 ? 9.75 ? 6.00 ? ns b16a tea , kr , retry , cr valid to clkout (setup time) 10.00 ? 10.00 ? 10.00 ? 4.50 ? ns b16b bb , bg , br , valid to clkout (setup time) 5 8.50 ? 8.50 ? 8.50 ? 4.00 ? ns b17 clkout to ta , tea , bi , bb , bg , br valid (hold time) 1.00 ? 1.00 ? 1.00 ? 2.00 ? ns b17a clkout to kr , retry , cr valid (hold time) 2.00 ? 2.00 ? 2.00 ? 2.00 ? ns b18 d(0:31), dp(0:3) valid to clkout rising edge (setup time) 6 6.00 ? 6.00 ? 6.00 ? 6.00 ? ns b19 clkout rising edge to d(0:31), dp(0:3) valid (hold time) 6 1.00 ? 1.00 ? 1.00 ? 2.00 ? ns b20 d(0:31), dp(0:3) valid to clkout falling edge (setup time) 7 4.00 ? 4.00 ? 4.00 ? 4.00 ? ns b21 clkout falling edge to d(0:31), dp(0:3) valid (hold time) 7 2.00 ? 2.00 ? 2.00 ? 2.00 ? ns b22 clkout rising edge to cs asserted gpcm acs = 00 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns b22a clkout falling edge to cs asserted gpcm acs = 10, trlx = 0 ? 8.00 ? 8.00 ? 8.00 ? 8.00 ns b22b clkout falling edge to cs asserted gpcm acs = 11, trlx = 0, ebdf = 0 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b22c clkout falling edge to cs asserted gpcm acs = 11, trlx = 0, ebdf = 1 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns table 7. bus operation timings (continued) num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 17 bus signal timing b23 clkout rising edge to cs negated gpcm read access, gpcm write access acs = 00, trlx = 0, and csnt = 0 2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns b24 a(0:31) and baddr(28:30) to cs asserted gpcm acs = 10, trlx = 0 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b24a a(0:31) and baddr(28:30) to cs asserted gpcm acs = 11, trlx = 0 13.15 ? 10.50 ? 8.00 ? 5.58 ? ns b25 clkout rising edge to oe , we (0:3) asserted ? 9.00 ? 9.00 ? 9.00 ? 9.00 ns b26 clkout rising edge to oe negated 2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns b27 a(0:31) and baddr(28:30) to cs asserted gpcm acs = 10, trlx = 1 35.88 ? 29.25 ? 23.00 ? 16.94 ? ns b27a a(0:31) and baddr(28:30) to cs asserted gpcm acs = 11, trlx = 1 43.45 ? 35.50 ? 28.00 ? 20.73 ? ns b28 clkout rising edge to we (0:3) negated gpcm write access csnt = 0 ? 9.00 ? 9.00 ? 9.00 ? 9.00 ns b28a clkout falling edge to we (0:3) negated gpcm write access trlx = 0, 1, csnt = 1, ebdf = 0 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b28b clkout falling edge to cs negated gpcm write access trlx = 0, 1, csnt = 1, acs = 10, or acs = 11, ebdf = 0 ? 14.33 ? 13.00 ? 11.75 ? 10.54 ns b28c clkout falling edge to we (0:3) negated gpcm write access trlx = 0, 1, csnt = 1 write access trlx = 0, csnt = 1, ebdf = 1 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns b28d clkout falling edge to cs negated gpcm write access trlx = 0, 1, csnt = 1, acs = 10, or acs = 11, ebdf = 1 ? 17.99 ? 16.00 ? 14.13 ? 12.31 ns b29 we (0:3) negated to d(0:31), dp(0:3) high-z gpcm write access csnt = 0, ebdf = 0 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b29a we (0:3) negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 0, csnt = 1, ebdf = 0 13.15 ? 10.5 ? 8.00 ? 5.58 ? ns b29b cs negated to d(0:31), dp(0:3), high-z gpcm write access, acs = 00, trlx = 0, 1, and csnt = 0 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b29c cs negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 0, csnt = 1, acs = 10, or acs = 11, ebdf = 0 13.15 ? 10.5 ? 8.00 ? 5.58 ? ns table 7. bus operation timings (continued) num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max
mpc860 powerquicc? family hardware specifications, rev. 8 18 freescale semiconductor bus signal timing b29d we (0:3) negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 1, csnt = 1, ebdf = 0 43.45 ? 35.5 ? 28.00 ? 20.73 ? ns b29e cs negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 1, csnt = 1, acs = 10, or acs = 11, ebdf = 0 43.45 ? 35.5 ? 28.00 ? 29.73 ? ns b29f we (0:3) negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 0, csnt = 1, ebdf = 1 8.86 ? 6.88 ? 5.00 ? 3.18 ? ns b29g cs negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 0, csnt = 1, acs = 10, or acs = 11, ebdf = 1 8.86 ? 6.88 ? 5.00 ? 3.18 ? ns b29h we (0:3) negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 1, csnt = 1, ebdf = 1 38.67 ? 31.38 ? 24.50 ? 17.83 ? ns b29i cs negated to d(0:31), dp(0:3) high-z gpcm write access, trlx = 1, csnt = 1, acs = 10, or acs = 11, ebdf = 1 38.67 ? 31.38 ? 24.50 ? 17.83 ? ns b30 cs , we (0:3) negated to a(0:31), baddr(28:30) invalid gpcm write access 8 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b30a we (0:3) negated to a(0:31), baddr(28:30) invalid gpcm, write access, trlx = 0, csnt = 1, cs negated to a(0:31) invalid gpcm write access, trlx = 0, csnt = 1 acs = 10, or acs = 11, ebdf = 0 13.15 ? 10.50 ? 8.00 ? 5.58 ? ns b30b we (0:3) negated to a(0:31), invalid gpcm baddr(28:30) invalid gpcm write access, trlx = 1, csnt = 1. cs negated to a(0:31), invalid gpcm, write access, trlx = 1, csnt = 1, acs = 10, or acs = 11, ebdf = 0 43.45 ? 35.50 ? 28.00 ? 20.73 ? ns b30c we (0:3) negated to a(0:31), baddr(28:30) invalid gpcm write access, trlx = 0, csnt = 1. cs negated to a(0:31) invalid gpcm write access, trlx = 0, csnt = 1, acs = 10, acs = 11, ebdf = 1 8.36 ? 6.38 ? 4.50 ? 2.68 ? ns b30d we (0:3) negated to a(0:31), baddr(28:30) invalid gpcm write access, trlx = 1, csnt =1. cs negated to a(0:31) invalid gpcm write access trlx = 1, csnt = 1, acs = 10, or acs = 11, ebdf = 1 38.67 ? 31.38 ? 24.50 ? 17.83 ? ns b31 clkout falling edge to cs valid?as requested by control bit cst4 in the corresponding word in upm 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns table 7. bus operation timings (continued) num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 19 bus signal timing b31a clkout falling edge to cs valid?as requested by control bit cst1 in the corresponding word in upm 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b31b clkout rising edge to cs valid?as requested by control bit cst2 in the corresponding word in upm 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns b31c clkout rising edge to cs valid?as requested by control bit cst3 in the corresponding word in upm 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns b31d clkout falling edge to cs valid?as requested by control bit cst1 in the corresponding word in upm, ebdf = 1 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns b32 clkout falling edge to bs valid?as requested by control bit bst4 in the corresponding word in upm 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns b32a clkout falling edge to bs valid?as requested by control bit bst1 in the corresponding word in upm, ebdf = 0 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b32b clkout rising edge to bs valid?as requested by control bit bst2 in the corresponding word in upm 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns b32c clkout rising edge to bs valid?as requested by control bit bst3 in the corresponding word in upm 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b32d clkout falling edge to bs valid?as requested by control bit bst1 in the corresponding word in upm, ebdf = 1 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns b33 clkout falling edge to gpl valid?as requested by control bit gxt4 in the corresponding word in upm 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns b33a clkout rising edge to gpl valid?as requested by control bit gxt3 in the corresponding word in upm 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns b34 a(0:31), baddr(28:30), and d(0:31) to cs valid?as requested by control bit cst4 in the corresponding word in upm 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b34a a(0:31), baddr(28:30), and d(0:31) to cs valid?as requested by control bit cst1 in the corresponding word in upm 13.15 ? 10.50 ? 8.00 ? 5.58 ? ns b34b a(0:31), baddr(28:30), and d(0:31) to cs valid?as requested by control bit cst2 in the corresponding word in upm 20.73 ? 16.75 ? 13.00 ? 9.36 ? ns table 7. bus operation timings (continued) num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max
mpc860 powerquicc? family hardware specifications, rev. 8 20 freescale semiconductor bus signal timing b35 a(0:31), baddr(28:30) to cs valid?as requested by control bit bst4 in the corresponding word in upm 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b35a a(0:31), baddr(28:30), and d(0:31) to bs valid?as requested by control bit bst1 in the corresponding word in upm 13.15 ? 10.50 ? 8.00 ? 5.58 ? ns b35b a(0:31), baddr(28:30), and d(0:31) to bs valid?as requested by control bit bst2 in the corresponding word in upm 20.73 ? 16.75 ? 13.00 ? 9.36 ? ns b36 a(0:31), baddr(28:30), and d(0:31) to gpl valid?as requested by control bit gxt4 in the corresponding word in upm 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns b37 upwait valid to clkout falling edge 9 6.00 ? 6.00 ? 6.00 ? 6.00 ? ns b38 clkout falling edge to upwait valid 9 1.00 ? 1.00 ? 1.00 ? 1.00 ? ns b39 as valid to clkout rising edge 10 7.00 ? 7.00 ? 7.00 ? 7.00 ? ns b40 a(0:31), tsiz(0:1), rd/wr , burst , valid to clkout rising edge 7.00 ? 7.00 ? 7.00 ? 7.00 ? ns b41 ts valid to clkout rising edge (setup time) 7.00 ? 7.00 ? 7.00 ? 7.00 ? ns b42 clkout rising edge to ts valid (hold time) 2.00 ? 2.00 ? 2.00 ? 2.00 ? ns b43 as negation to memory controller signals negation ?tbd?tbd?tbd?tbdns 1 phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value. 2 if the rate of change of the frequency of extal is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the m aximum allowed jitter on extal can be up to 2%. 3 the timings specified in b4 and b5 are based on full strength clock. 4 the timing for br output is relevant when the mpc860 is selected to work with external bus arbiter. the timing for bg output is relevant when the mpc860 is selected to work with internal bus arbiter. 5 the timing required for br input is relevant when the mpc860 is selected to work with internal bus arbiter. the timing for bg input is relevant when the mpc860 is selected to work with external bus arbiter. 6 the d(0:31) and dp(0:3) input timings b18 and b19 refer to the rising edge of the clkout in which the ta input signal is asserted. 7 the d(0:31) and dp(0:3) input timings b20 and b21 refer to the falling edge of the clkout. this timing is valid only for read accesses controlled by chip-selects under control of the upm in the memory controller, for data beats where dlt3 = 1 in the upm ram words. (this is only the case where data is latched on the falling edge of clkout.) 8 the timing b30 refers to cs when acs = 00 and to we (0:3) when csnt = 0. 9 the signal upwait is considered asynchronous to the clkout and synchronized internally. the timings specified in b37 and b38 are specified to enable the freeze of the upm output signals as described in figure 18 . 10 the as signal is considered asynchronous to the clkout. the timing b39 is specified in order to allow the behavior specified in figure 21 . table 7. bus operation timings (continued) num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 21 bus signal timing figure 3 is the control timing diagram. figure 3. control timing figure 4 provides the timing for the external clock. figure 4. external clock timing clkout outputs a b outputs b a inputs d c inputs c d a maximum output delay specification. b minimum output hold time. c minimum input setup time specification. d minimum input hold time specification. clkout b1 b5 b3 b4 b1 b2
mpc860 powerquicc? family hardware specifications, rev. 8 22 freescale semiconductor bus signal timing figure 5 provides the timing for the synchronous output signals. figure 5. synchronous output signals timing figure 6 provides the timing for the synchronous ac tive pull-up and open-drain output signals. figure 6. synchronous active pull-up resistor and open-drain outputs signals timing clkout output signals output signals output signals b8 b7 b9 b8a b9 b7a b8b b7b clkout ts , bb ta , bi tea b13 b12 b11 b11a b12a b13a b15 b14
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 23 bus signal timing figure 7 provides the timing for the synchronous input signals. figure 7. synchronous input signals timing figure 8 provides normal case timing for input data. it also applies to normal read accesses under the control of the upm in the memory controller. figure 8. input data timing in normal case clkout ta , bi tea , kr , retry , cr bb , bg , br b16 b17 b16a b17a b16b b17 clkout ta d[0:31], dp[0:3] b16 b17 b19 b18
mpc860 powerquicc? family hardware specifications, rev. 8 24 freescale semiconductor bus signal timing figure 9 provides the timing for the input data controlled by the upm for data beats where dlt3 = 1 in the upm ram words. (this is only the case where data is latched on the falling edge of clkout.) figure 9. input data timing when controlled by upm in the memory controller and dlt3 = 1 figure 10 through figure 13 provide the timing for the external bus read controlled by various gpcm factors. figure 10. external bus read timing (gpcm controlled?acs = 00) clkout ta d[0:31], dp[0:3] b20 b21 clkout a[0:31] cs x oe we [0:3] ts d[0:31], dp[0:3] b11 b12 b23 b8 b22 b26 b19 b18 b25 b28
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 25 bus signal timing figure 11. external bus read timing (gpcm controlled?trlx = 0, acs = 10) figure 12. external bus read timing (gpcm controlled?trlx = 0, acs = 11) clkout a[0:31] cs x oe ts d[0:31], dp[0:3] b11 b12 b8 b22a b23 b26 b19 b18 b25 b24 clkout a[0:31] cs x oe ts d[0:31], dp[0:3] b11 b12 b22b b8 b22c b23 b24a b25 b26 b19 b18
mpc860 powerquicc? family hardware specifications, rev. 8 26 freescale semiconductor bus signal timing figure 13. external bus read timing (gpcm controlled?trlx = 0 or 1, acs = 10, acs = 11) clkout a[0:31] cs x oe ts d[0:31], dp[0:3] b11 b12 b8 b22a b27 b27a b22b b22c b19 b18 b26 b23
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 27 bus signal timing figure 14 through figure 16 provide the timing for the external bus write controlled by various gpcm factors. figure 14. external bus write timing (gpcm controlled?trlx = 0 or 1, csnt = 0) clkout cs x we [0:3] oe ts d[0:31], dp[0:3] b11 b8 b22 b23 b12 b30 b28 b25 b26 b8 b9 b29 b29b a[j0:31]
mpc860 powerquicc? family hardware specifications, rev. 8 28 freescale semiconductor bus signal timing figure 15. external bus write timing (gpcm controlled?trlx = 0 or 1, csnt = 1) b23 b30a b30c clkout a[0:31] cs x oe we [0:3] ts d[0:31], dp[0:3] b11 b8 b22 b12 b28b b28d b25 b26 b8 b28a b9 b28c b29c b29g b29a b29f
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 29 bus signal timing figure 16. external bus write timing (gpcm controlled?trlx = 0 or 1, csnt = 1) b23 b22 b8 b12 b11 clkout a[0:31] cs x we [0:3] ts oe d[0:31], dp[0:3] b30d b30b b28b b28d b25 b29e b29i b26 b29d b29h b28a b28c b9 b8 b29b
mpc860 powerquicc? family hardware specifications, rev. 8 30 freescale semiconductor bus signal timing figure 17 provides the timing for the external bus controlled by the upm. figure 17. external bus timing (upm controlled signals) clkout cs x b31d b8 b31 b34 b32b gpl_a [0:5], gpl_b [0:5] bs_a [0:3], bs_b [0:3] a[0:31] b31c b31b b34a b32 b32a b32d b34b b36 b35b b35a b35 b33 b32c b33a b31a
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 31 bus signal timing figure 18 provides the timing for the asynchronous asserted upwait signal controlled by the upm. figure 18. asynchronous upwait asserted detection in upm handled cycles timing figure 19 provides the timing for the asynchronous nega ted upwait signal controlled by the upm. figure 19. asynchronous upwait negated detection in upm handled cycles timing clkout cs x upwait gpl_a [0:5], gpl_b [0:5] bs_a [0:3], bs_b [0:3] b37 b38 clkout cs x upwait gpl_a [0:5], gpl_b [0:5] bs_a [0:3], bs_b [0:3] b37 b38
mpc860 powerquicc? family hardware specifications, rev. 8 32 freescale semiconductor bus signal timing figure 20 provides the timing for the synchronous external master access controlled by the gpcm. figure 20. synchronous external master access timing (gpcm handled acs = 00) figure 21 provides the timing for the asynchronous external master memory access controlled by the gpcm. figure 21. asynchronous external master memory access timing (gpcm controlled?acs = 00) figure 22 provides the timing for the asynchronous external master control signals negation. figure 22. asynchronous external master?control signals negation timing clkout ts a[0:31], tsiz[0:1], r/w , burst cs x b41 b42 b40 b22 clkout as a[0:31], tsiz[0:1], r/w cs x b39 b40 b22 as cs x, we [0:3], oe , gplx , bs [0:3] b43
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 33 bus signal timing table 8 provides interrupt timing for the mpc860. figure 23 provides the interrupt detection timing for the external level-sensitive lines. figure 23. interrupt detection timing for external level sensitive lines figure 24 provides the interrupt detection timing for the external edge-sensitive lines. figure 24. interrupt detection timing for external edge sensitive lines table 8. interrupt timing num characteristic 1 1 the timings i39 and i40 describe the testing conditions under which the irq lines are tested when being defined as level-sensitive. the irq lines are synchronized internally and do not have to be asserted or negated with reference to the clkout. the timings i41, i42, and i43 are specified to allow the correct function of the irq lines detection circuitry and have no direct relation with the total system interrupt latency that the mpc860 is able to support. all frequencies unit min max i39 irq x valid to clkout rising edge (setup time) 6.00 ? ns i40 irq x hold time after clkout 2.00 ? ns i41 irq x pulse width low 3.00 ? ns i42 irq x pulse width high 3.00 ? ns i43 irq x edge-to-edge time 4 t clockout ?? clkout irq x i39 i40 clkout irq x i41 i42 i43 i43
mpc860 powerquicc? family hardware specifications, rev. 8 34 freescale semiconductor bus signal timing table 9 shows the pcmcia timing for the mpc860. table 9. pcmcia timing num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max p44 a(0:31), reg valid to pcmcia strobe asserted 1 1 psst = 1. otherwise add psst times cycle time. psht = 0. otherwise add psht times cycle time. these synchronous timings define when the waitx signals are detected in order to freeze (or relieve) the pcmcia current cycle. the waitx assertion will be effective only if it is detected 2 cycles before the psl timer expiration. see chapter 16, ?pcmcia interface,? in the mpc860 powerquicc? family user?s manual . 20.73 ? 16.75 ? 13.00 ? 9.36 ? ns p45 a(0:31), reg valid to ale negation 1 28.30 ? 23.00 ? 18.00 ? 13.15 ? ns p46 clkout to reg valid 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns p47 clkout to reg invalid 8.58 ? 7.25 ? 6.00 ? 4.84 ? ns p48 clkout to ce1 , ce2 asserted 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns p49 clkout to ce1 , ce2 negated 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns p50 clkout to pcoe , iord , pcwe , iowr assert time ? 11.00 11.00 ? 11.00 ? 11.00 ns p51 clkout to pcoe , iord , pcwe , iowr negate time 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns p52 clkout to ale assert time 7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04 ns p53 clkout to ale negate time ? 15.58 14.25 ? 13.00 ? 11.84 ns p54 pcwe , iowr negated to d(0:31) invalid 1 5.58 ? 4.25 ? 3.00 ? 1.79 ? ns p55 waita and waitb valid to clkout rising edge 1 8.00 ? 8.00 ? 8.00 ? 8.00 ? ns p56 clkout rising edge to waita and waitb invalid 1 2.00 ? 2.00 ? 2.00 ? 2.00 ? ns
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 35 bus signal timing figure 25 provides the pcmcia access cycle timing for the external bus read. figure 25. pcmcia access cycle timing external bus read clkout a[0:31] reg ce1 /ce2 pcoe , iord ts d[0:31] ale b19 b18 p53 p52 p52 p51 p50 p48 p49 p46 p45 p44 p47
mpc860 powerquicc? family hardware specifications, rev. 8 36 freescale semiconductor bus signal timing figure 26 provides the pcmcia access cycle timing for the external bus write. figure 26. pcmcia access cycle timing external bus write figure 27 provides the pcmcia wait signal detection timing. figure 27. pcmcia wait signal detection timing clkout a[0:31] reg ce1 /ce2 pcwe , iowr ts d[0:31] ale b9 b8 p53 p52 p52 p51 p50 p48 p49 p46 p45 p44 p47 p54 clkout wait x p55 p56
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 37 bus signal timing table 10 shows the pcmcia port timing for the mpc860. figure 28 provides the pcmcia output port timing for the mpc860. figure 28. pcmcia output port timing figure 29 provides the pcmcia output port timing for the mpc860. figure 29. pcmcia input port timing table 10. pcmcia port timing num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max p57 clkout to opx valid ? 19.00 ? 19.00 ? 19.00 ? 19.00 ns p58 hreset negated to opx drive 1 1 op2 and op3 only. 25.73 ? 21.75 ? 18.00 ? 14.36 ? ns p59 ip_xx valid to clkout rising edge 5.00 ? 5.00 ? 5.00 ? 5.00 ? ns p60 clkout rising edge to ip_xx invalid 1.00 ? 1.00 ? 1.00 ? 1.00 ? ns clkout hreset output signals op2, op3 p57 p58 clkout input signals p59 p60
mpc860 powerquicc? family hardware specifications, rev. 8 38 freescale semiconductor bus signal timing table 11 shows the debug port timing for the mpc860. figure 30 provides the input timing for the debug port clock. figure 30. debug port clock input timing figure 31 provides the timing for the debug port. figure 31. debug port timings table 11. debug port timing num characteristic all frequencies unit min max p61 dsck cycle time 3 t clockout ?? p62 dsck clock pulse width 1.25 t clockout ?? p63 dsck rise and fall times 0.00 3.00 ns p64 dsdi input data setup time 8.00 ? ns p65 dsdi data hold time 5.00 ? ns p66 dsck low to dsdo data valid 0.00 15.00 ns p67 dsck low to dsdo invalid 0.00 2.00 ns dsck d61 d61 d63 d62 d62 d63 dsck dsdi dsdo d64 d65 d66 d67
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 39 bus signal timing table 12 shows the reset timing for the mpc860. table 12. reset timing num characteristic 33 mhz 40 mhz 50 mhz 66 mhz unit min max min max min max min max r69 clkout to hreset high impedance ? 20.00 ? 20.00 ? 20.00 ? 20.00 ns r70 clkout to sreset high impedance ? 20.00 ? 20.00 ? 20.00 ? 20.00 ns r71 rstconf pulse width 515.15 ? 425.00 340.00 ? 257.58 ? ns r72? ???????? r73 configuration data to hreset rising edge setup time 504.55 ? 425.00 ? 350.00 ? 277.27 ? ns r74 configuration data to rstconf rising edge setup time 350.00 ? 350.00 ? 350.00 ? 350.00 ? ns r75 configuration data hold time after rstconf negation 0.00 ? 0.00 ? 0.00 ? 0.00 ? ns r76 configuration data hold time after hreset negation 0.00 ? 0.00 ? 0.00 ? 0.00 ? ns r77 hreset and rstconf asserted to data out drive ? 25.00 25.00 ? 25.00 ? 25.00 ns r78 rstconf negated to data out high impedance ? 25.00 ? 25.00 ? 25.00 ? 25.00 ns r79 clkout of last rising edge before chip three-state hreset to data out high impedance ? 25.00 ? 25.00 ? 25.00 ? 25.00 ns r80 dsdi, dsck setup 90.91 ? 75.00 ? 60.00 ? 45.45 ? ns r81 dsdi, dsck hold time 0.00 ? 0.00 ? 0.00 ? 0.00 ? ns r82 sreset negated to clkout rising edge for dsdi and dsck sample 242.42 ? 200.00 ? 160.00 ? 121.21 ? ns
mpc860 powerquicc? family hardware specifications, rev. 8 40 freescale semiconductor bus signal timing figure 32 shows the reset timing for the data bus configuration. figure 32. reset timing?configuration from data bus figure 33 provides the reset timing for the data bus weak drive dur ing configuration. figure 33. reset timing?data bus weak drive during configuration hreset rstconf d[0:31] (in) r71 r74 r73 r75 r76 clkout hreset d[0:31] (out) (weak) rstconf r69 r79 r77 r78
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 41 ieee 1149.1 electrical specifications figure 34 provides the reset timing for the debug port configuration. figure 34. reset timing?debug port configuration 10 ieee 1149.1 electrical specifications table 13 provides the jtag timings for the mpc860 shown in figure 35 through figure 38 . table 13. jtag timing num characteristic all frequencies unit min max j82 tck cycle time 100.00 ? ns j83 tck clock pulse width measured at 1.5 v 40.00 ? ns j84 tck rise and fall times 0.00 10.00 ns j85 tms, tdi data setup time 5.00 ? ns j86 tms, tdi data hold time 25.00 ? ns j87 tck low to tdo data valid ? 27.00 ns j88 tck low to tdo data invalid 0.00 ? ns j89 tck low to tdo high impedance ? 20.00 ns j90 trst assert time 100.00 ? ns j91 trst setup time to tck low 40.00 ? ns j92 tck falling edge to output valid ? 50.00 ns j93 tck falling edge to output valid out of high impedance ? 50.00 ns j94 tck falling edge to output high impedance ? 50.00 ns j95 boundary scan input valid to tck rising edge 50.00 ? ns j96 tck rising edge to boundary scan input invalid 50.00 ? ns clkout sreset dsck, dsdi r70 r82 r80 r80 r81 r81
mpc860 powerquicc? family hardware specifications, rev. 8 42 freescale semiconductor ieee 1149.1 electrical specifications figure 35. jtag test clock input timing figure 36. jtag test access port timing diagram figure 37. jtag trst timing diagram figure 38. boundary scan (jtag) timing diagram tck j82 j83 j82 j83 j84 j84 tck tms, tdi tdo j85 j86 j87 j88 j89 tck trst j91 j90 tck output signals output signals output signals j92 j94 j93 j95 j96
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 43 cpm electrical characteristics 11 cpm electrical characteristics this section provides the ac and dc electrical sp ecifications for the communi cations processor module (cpm) of the mpc860. 11.1 pip/pio ac electrical specifications table 14 provides the pip/pio ac timings as shown in figure 39 through figure 43 . figure 39. pip rx (interlock mode) timing diagram table 14. pip/pio timing num characteristic all frequencies unit min max 21 data-in setup time to stbi low 0 ? ns 22 data-in hold time to stbi high 2.5 ? t3 1 1 t3 = specification 23. ?clk 23 stbi pulse width 1.5 ? clk 24 stbo pulse width 1 clk ? 5 ns ? ns 25 data-out setup time to stbo low 2 ? clk 26 data-out hold time from stbo high 5 ? clk 27 stbi low to stbo low (rx interlock) ? 2 clk 28 stbi low to stbo high (tx interlock) 2 ? clk 29 data-in setup time to clock high 15 ? ns 30 data-in hold time from clock high 7.5 ? ns 31 clock low to data-out valid (cpu writes data, control, or direction) ? 25 ns data-in stbi 23 24 22 stbo 27 21
mpc860 powerquicc? family hardware specifications, rev. 8 44 freescale semiconductor cpm electrical characteristics figure 40. pip tx (interlock mode) timing diagram figure 41. pip rx (pulse mode) timing diagram figure 42. pip tx (pulse mode) timing diagram data-out 24 23 26 28 25 stbo (output) stbi (input) data-in 23 22 21 stbi (input) stbo (output) 24 data-out 24 26 25 stbo (output) stbi (input) 23
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 45 cpm electrical characteristics figure 43. parallel i/o data-in/data-out timing diagram 11.2 port c interrupt ac electrical specifications table 15 provides the timings for port c interrupts. figure 44 shows the port c interrupt detection timing. figure 44. port c interrupt detection timing 11.3 idma controller ac electrical specifications table 16 provides the idma controller timings as shown in figure 45 through figure 48 . table 15. port c interrupt timing num characteristic 33.34 mhz 1 1 external bus frequency of greater than or equal to 33.34 mhz. unit min max 35 port c interrupt pulse width low (edge-triggered mode) 55 ? ns 36 port c interrupt minimum time between active edges 55 ? ns table 16. idma controller timing num characteristic all frequencies unit min max 40 dreq setup time to clock high 7 ? ns 41 dreq hold time from clock high 3 ? ns clko data-in 29 31 30 data-out port c 35 36 (input)
mpc860 powerquicc? family hardware specifications, rev. 8 46 freescale semiconductor cpm electrical characteristics figure 45. idma external requests timing diagram figure 46. sdack timing diagram?peripheral write, externally-generated ta 42 sdack assertion delay from clock high ? 12 ns 43 sdack negation delay from clock low ? 12 ns 44 sdack negation delay from ta low ? 20 ns 45 sdack negation delay from clock high ? 15 ns 46 ta assertion to rising edge of the clock setup time (applies to external ta )7 ?n s table 16. idma controller timing (continued) num characteristic all frequencies unit min max 41 40 dreq (input) clko (output) data 42 46 43 clko (output) ts (output) r/w (output) sdack ta (input)
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 47 cpm electrical characteristics figure 47. sdack timing diagram?peripheral write, internally-generated ta figure 48. sdack timing diagram?peripheral read, internally-generated ta data 42 44 clko (output) ts (output) r/w (output) ta (output) sdack data 42 45 clko (output) ts (output) r/w (output) ta (output) sdack
mpc860 powerquicc? family hardware specifications, rev. 8 48 freescale semiconductor cpm electrical characteristics 11.4 baud rate generator ac electrical specifications table 17 provides the baud rate generator timings as shown in figure 49 . figure 49. baud rate generator timing diagram 11.5 timer ac electrical specifications table 18 provides the general-purpose timer timings as shown in figure 50 . table 17. baud rate generator timing num characteristic all frequencies unit min max 50 brgo rise and fall time ? 10 ns 51 brgo duty cycle 40 60 % 52 brgo cycle 40 ? ns table 18. timer timing num characteristic all frequencies unit min max 61 tin/tgate rise and fall time 10 ? ns 62 tin/tgate low time 1 ? clk 63 tin/tgate high time 2 ? clk 64 tin/tgate cycle time 3 ? clk 65 clko low to tout valid 3 25 ns 52 50 51 brgox 50 51
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 49 cpm electrical characteristics figure 50. cpm general-purpose timers timing diagram 11.6 serial interface ac electrical specifications table 19 provides the serial interface timings as shown in figure 51 through figure 55 . table 19. si timing num characteristic all frequencies unit min max 70 l1rclk, l1tclk frequency (dsc = 0) 1, 2 ? syncclk/2.5 mhz 71 l1rclk, l1tclk width low (dsc = 0) 2 p + 10 ? ns 71a l1rclk, l1tclk width high (dsc = 0) 3 p + 10 ? ns 72 l1txd, l1st(1?4), l1rq , l1clko rise/fall time ? 15.00 ns 73 l1rsync, l1tsync valid to l1clk edge (sync setup time) 20.00 ? ns 74 l1clk edge to l1rsync, l1tsync, invalid (sync hold time) 35.00 ? ns 75 l1rsync, l1tsync rise/fall time ? 15.00 ns 76 l1rxd valid to l1clk edge (l1rxd setup time) 17.00 ? ns 77 l1clk edge to l1rxd invalid (l1rxd hold time) 13.00 ? ns 78 l1clk edge to l1st(1?4) valid 4 10.00 45.00 ns 78a l1sync valid to l1st(1?4) valid 10.00 45.00 ns 79 l1clk edge to l1st(1?4) invalid 10.00 45.00 ns 80 l1clk edge to l1txd valid 10.00 55.00 ns 80a l1tsync valid to l1txd valid 4 10.00 55.00 ns 81 l1clk edge to l1txd high impedance 0.00 42.00 ns 82 l1rclk, l1tclk frequency (dsc =1 ) ? 16.00 or syncclk/2 mhz 83 l1rclk, l1tclk width low (dsc = 1) p + 10 ? ns 83a l1rclk, l1tclk width high (dsc = 1) 3 p + 10 ? ns clko tin/tgate (input) tout (output) 64 65 61 62 63 61 60
mpc860 powerquicc? family hardware specifications, rev. 8 50 freescale semiconductor cpm electrical characteristics figure 51. si receive timing diagram with normal clocking (dsc = 0) 84 l1clk edge to l1clko valid (dsc = 1) ? 30.00 ns 85 l1rq valid before falling edge of l1tsync 4 1.00 ? l1tcl k 86 l1gr setup time 2 42.00 ? ns 87 l1gr hold time 42.00 ? ns 88 l1clk edge to l1sync valid (fsd = 00) cnt = 0000, byt = 0, dsc = 0) ? 0.00 ns 1 the ratio syncclk/l1rclk must be greater than 2.5/1. 2 these specs are valid for idl mode only. 3 where p = 1/clkout. thus, for a 25-mhz clko1 rate, p = 40 ns. 4 these strobes and txd on the first bit of the frame become valid after l1clk edge or l1sync, whichever comes later. table 19. si timing (continued) num characteristic all frequencies unit min max l1rxd (input) l1rclk (fe = 0, ce = 0) (input) l1rclk (fe = 1, ce = 1) (input) l1rsync (input) l1st(4?1) (output) 71 72 70 71a rfsd=1 75 73 74 77 78 76 79 bit0
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 51 cpm electrical characteristics figure 52. si receive timing with double-speed clocking (dsc = 1) l1rxd (input) l1rclk (fe = 1, ce = 1) (input) l1rclk (fe = 0, ce = 0) (input) l1rsync (input) l1st(4?1) (output) 72 rfsd=1 75 73 74 77 78 76 79 83a 82 l1clko (output) 84 bit0
mpc860 powerquicc? family hardware specifications, rev. 8 52 freescale semiconductor cpm electrical characteristics figure 53. si transmit timing diagram (dsc = 0) l1txd (output) l1tclk (fe = 0, ce = 0) (input) l1tclk (fe = 1, ce = 1) (input) l1tsync (input) l1st(4?1) (output) 71 70 72 73 75 74 80a 80 78 tfsd=0 81 79 bit0
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 53 cpm electrical characteristics figure 54. si transmit timing with double speed clocking (dsc = 1) l1txd (output) l1rclk (fe = 0, ce = 0) (input) l1rclk (fe = 1, ce = 1) (input) l1rsync (input) l1st(4?1) (output) 72 tfsd=0 75 73 74 78a 80 79 83a 82 l1clko (output) 84 bit0 78 81
mpc860 powerquicc? family hardware specifications, rev. 8 54 freescale semiconductor cpm electrical characteristics figure 55. idl timing b17 b16 b14 b13 b12 b11 b10 d1 a b27 b26 b25 b24 b23 b22 b21 b20 d2 m b15 l1rxd (input) l1txd (output) l1st(4?1) (output) l1rq (output) 73 77 123456789 10 11 12 13 14 15 16 17 18 19 20 74 80 b17 b16 b15 b14 b13 b12 b11 b10 d1 a b27 b26 b25 b24 b23 b22 b21 b20 d2 m 71 71 l1gr (input) 78 85 72 76 87 86 l1rsync (input) l1rclk (input) 81
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 55 cpm electrical characteristics 11.7 scc in nmsi mode electrical specifications table 20 provides the nmsi external clock timing. table 21 provides the nmsi internal clock timing. table 20. nmsi external clock timing num characteristic all frequencies unit min max 100 rclk1 and tclk1 width high 1 1 the ratios syncclk/rclk1 and syncclk/tclk1 must be greater than or equal to 2.25/1. 1/syncclk ? ns 101 rclk1 and tclk1 width low 1/syncclk + 5 ? ns 102 rclk1 and tclk1 rise/fall time ? 15.00 ns 103 txd1 active delay (from tclk1 falling edge) 0.00 50.00 ns 104 rts1 active/inactive delay (from tclk1 falling edge) 0.00 50.00 ns 105 cts1 setup time to tclk1 rising edge 5.00 ? ns 106 rxd1 setup time to rclk1 rising edge 5.00 ? ns 107 rxd1 hold time from rclk1 rising edge 2 2 also applies to cd and cts hold time when they are used as external sync signals. 5.00 ? ns 108 cd1 setup time to rclk1 rising edge 5.00 ? ns table 21. nmsi internal clock timing num characteristic all frequencies unit min max 100 rclk1 and tclk1 frequency 1 1 the ratios syncclk/rclk1 and syncclk/tclk1 must be greater than or equal to 3/1. 0.00 syncclk/3 mhz 102 rclk1 and tclk1 rise/fall time ? ? ns 103 txd1 active delay (from tclk1 falling edge) 0.00 30.00 ns 104 rts1 active/inactive delay (from tclk1 falling edge) 0.00 30.00 ns 105 cts1 setup time to tclk1 rising edge 40.00 ? ns 106 rxd1 setup time to rclk1 rising edge 40.00 ? ns 107 rxd1 hold time from rclk1 rising edge 2 2 also applies to cd and cts hold time when they are used as external sync signals. 0.00 ? ns 108 cd1 setup time to rclk1 rising edge 40.00 ? ns
mpc860 powerquicc? family hardware specifications, rev. 8 56 freescale semiconductor cpm electrical characteristics figure 56 through figure 58 show the nmsi timings. figure 56. scc nmsi receive timing diagram figure 57. scc nmsi transmit timing diagram rclk1 cd1 (input) 102 100 107 108 107 rxd1 (input) cd1 (sync input) 102 101 106 tclk1 cts1 (input) 102 100 104 107 txd1 (output) cts1 (sync input) 102 101 rts1 (output) 105 103 104
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 57 cpm electrical characteristics figure 58. hdlc bus timing diagram 11.8 ethernet electrical specifications table 22 provides the ethernet timings as shown in figure 59 through figure 63 . table 22. ethernet timing num characteristic all frequencies unit min max 120 clsn width high 40 ? ns 121 rclk1 rise/fall time ? 15 ns 122 rclk1 width low 40 ? ns 123 rclk1 clock period 1 80 120 ns 124 rxd1 setup time 20 ? ns 125 rxd1 hold time 5 ? ns 126 rena active delay (from rclk1 rising edge of the last data bit) 10 ? ns 127 rena width low 100 ? ns 128 tclk1 rise/fall time ? 15 ns 129 tclk1 width low 40 ? ns 130 tclk1 clock period 1 99 101 ns 131 txd1 active delay (from tclk1 rising edge) 10 50 ns 132 txd1 inactive delay (from tclk1 rising edge) 10 50 ns 133 tena active delay (from tclk1 rising edge) 10 50 ns 134 tena inactive delay (from tclk1 rising edge) 10 50 ns tclk1 cts1 (echo input) 102 100 104 txd1 (output) 102 101 rts1 (output) 103 104 107 105
mpc860 powerquicc? family hardware specifications, rev. 8 58 freescale semiconductor cpm electrical characteristics figure 59. ethernet collision timing diagram figure 60. ethernet receive timing diagram 135 rstrt active delay (from tclk1 falling edge) 10 50 ns 136 rstrt inactive delay (from tclk1 falling edge) 10 50 ns 137 reject width low 1 ? clk 138 clko1 low to sdack asserted 2 ?2 0n s 139 clko1 low to sdack negated 2 ?2 0n s 1 the ratios syncclk/rclk1 and syncclk/tclk1 must be greater than or equal to 2/1. 2 sdack is asserted whenever the sdma writes the incoming frame da into memory. table 22. ethernet timing (continued) num characteristic all frequencies unit min max clsn(cts1 ) 120 (input) rclk1 121 rxd1 (input) 121 rena(cd1 ) (input) 125 124 123 127 126 last bit
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 59 cpm electrical characteristics figure 61. ethernet transmit timing diagram figure 62. cam interface receive start timing diagram figure 63. cam interface reject timing diagram tclk1 128 txd1 (output) 128 tena(rts1 ) (input) notes: transmit clock invert (tci) bit in gsmr is set. if rena is deasserted before tena, or rena is not asserted at all during transmit, then the csl bit is set in the buffer descriptor at the end of the frame transmission. 1. 2. rena(cd1 ) (input) 133 134 132 131 121 129 (note 2) rclk1 rxd1 (input) rstrt (output) 0 136 125 1 1 bit1 bit2 start frame delimiter reject 137
mpc860 powerquicc? family hardware specifications, rev. 8 60 freescale semiconductor cpm electrical characteristics 11.9 smc transparent ac electrical specifications table 23 provides the smc transparent timings as shown in figure 64 . figure 64. smc transparent timing diagram table 23. smc transparent timing num characteristic all frequencies unit min max 150 smclk clock period 1 1 syncclk must be at least twice as fast as smclk. 100 ? ns 151 smclk width low 50 ? ns 151a smclk width high 50 ? ns 152 smclk rise/fall time ? 15 ns 153 smtxd active delay (from smclk falling edge) 10 50 ns 154 smrxd/smsync setup time 20 ? ns 155 rxd1/smsync hold time 5 ? ns smclk smrxd (input) 152 150 smtxd (output) 152 151 smsync 151a 154 153 155 154 155 note 1 note: this delay is equal to an integer number of character-length clocks. 1.
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 61 cpm electrical characteristics 11.10 spi master ac electrical specifications table 24 provides the spi master timings as shown in figure 65 and figure 66 . figure 65. spi master (cp = 0) timing diagram table 24. spi master timing num characteristic all frequencies unit min max 160 master cycle time 4 1024 t cyc 161 master clock (sck) high or low time 2 512 t cyc 162 master data setup time (inputs) 50 ? ns 163 master data hold time (inputs) 0 ? ns 164 master data valid (after sck edge) ? 20 ns 165 master data hold time (outputs) 0 ? ns 166 rise time output ? 15 ns 167 fall time output ? 15 ns spimosi (output) spiclk (ci = 0) (output) spiclk (ci = 1) (output) spimiso (input) 162 data 166 167 161 161 160 msb lsb msb msb data lsb msb 167 166 163 166 167 165 164
mpc860 powerquicc? family hardware specifications, rev. 8 62 freescale semiconductor cpm electrical characteristics figure 66. spi master (cp = 1) timing diagram 11.11 spi slave ac electrical specifications table 25 provides the spi slave timings as shown in figure 67 and figure 68 . table 25. spi slave timing num characteristic all frequencies unit min max 170 slave cycle time 2 ? t cyc 171 slave enable lead time 15 ? ns 172 slave enable lag time 15 ? ns 173 slave clock (spiclk) high or low time 1 ? t cyc 174 slave sequential transfer delay (does not require deselect) 1 ? t cyc 175 slave data setup time (inputs) 20 ? ns 176 slave data hold time (inputs) 20 ? ns 177 slave access time ? 50 ns spimosi (output) spiclk (ci = 0) (output) spiclk (ci = 1) (output) spimiso (input) data 166 167 161 161 160 msb lsb msb msb data lsb msb 167 166 163 166 167 165 164 162
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 63 cpm electrical characteristics figure 67. spi slave (cp = 0) timing diagram figure 68. spi slave (cp = 1) timing diagram spimosi (input) spiclk (ci = 0) (input) spiclk (ci = 1) (input) spimiso (output) 180 data 181 182 173 173 170 msb lsb msb 181 177 182 175 179 spisel (input) 171 172 174 data msb lsb msb undef 181 178 176 182 spimosi (input) spiclk (ci = 0) (input) spiclk (ci = 1) (input) spimiso (output) 180 data 181 182 msb lsb 181 177 182 175 179 spisel (input) 174 data msb lsb undef 178 176 182 msb msb 172 173 173 171 170 181
mpc860 powerquicc? family hardware specifications, rev. 8 64 freescale semiconductor cpm electrical characteristics 11.12 i 2 c ac electrical specifications table 26 provides the i 2 c (scl < 100 khz) timings. table 27 provides the i 2 c (scl > 100 khz) timings. table 26. i 2 c timing (scl < 100 kh z ) num characteristic all frequencies unit min max 200 scl clock frequency (slave) 0 100 khz 200 scl clock frequency (master) 1 1 scl frequency is given by scl = brgclk_frequency / ((brg register + 3 pre_scaler 2). the ratio syncclk/(brgclk/pre_scaler) must be greater than or equal to 4/1. 1.5 100 khz 202 bus free time between transmissions 4.7 ? s 203 low period of scl 4.7 ? s 204 high period of scl 4.0 ? s 205 start condition setup time 4.7 ? s 206 start condition hold time 4.0 ? s 207 data hold time 0 ? s 208 data setup time 250 ? ns 209 sdl/scl rise time ? 1 s 210 sdl/scl fall time ? 300 ns 211 stop condition setup time 4.7 ? s table 27 . . i 2 c timing (scl > 100 kh z ) num characteristic expression all frequencies unit min max 200 scl clock frequency (slave) fscl 0 brgclk/48 hz 200 scl clock frequency (master) 1 1 scl frequency is given by scl = brgclk_frequency / ((brg register + 3) pre_scaler 2). the ratio syncclk/(brgclk / pre_scaler) must be greater than or equal to 4/1. fscl brgclk/16512 brgclk/48 hz 202 bus free time between transmissions 1/(2.2 * fscl) ? s 203 low period of scl 1/(2.2 * fscl) ? s 204 high period of scl 1/(2.2 * fscl) ? s 205 start condition setup time 1/(2.2 * fscl) ? s 206 start condition hold time 1/(2.2 * fscl) ? s 207 data hold time 0 ? s 208 data setup time 1/(40 * fscl) ? s 209 sdl/scl rise time ? 1/(10 * fscl) s 210 sdl/scl fall time ? 1/(33 * fscl) s 211 stop condition setup time 1/2(2.2 * fscl) ? s
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 65 utopia ac electrical specifications figure 69 shows the i 2 c bus timing. figure 69. i 2 c bus timing diagram 12 utopia ac electrical specifications table 28 shows the ac electrical specifications for the utopia interface. table 28. utopia ac electrical specifications num signal characteristic direction min max unit u1 utpclk rise/fall time (internal clock option) output ? 3.5 ns duty cycle 50 50 % frequency ?50mhz u1a utpclk rise/fall time (external clock option) input ? 3.5 ns duty cycle 40 60 % frequency ?50mhz u2 rxenb and txenb active delay output 2 16 ns u3 utpb, soc, rxclav and txclav setup time input 8 ? ns u4 utpb, soc, rxclav and txclav hold time input 1 ? ns u5 utpb, soc active delay (and phreq and phsel active delay in mphy mode) output 2 16 ns scl 202 205 203 207 204 208 206 209 211 210 sda
mpc860 powerquicc? family hardware specifications, rev. 8 66 freescale semiconductor utopia ac electrical specifications figure 70 shows signal timings during utopia receive operations. figure 70. utopia receive timing figure 71 shows signal timings during utopia transmit operations. figure 71. utopia transmit timing utpclk utpb rxenb u1 3 2 soc rxclav phreq n 3 4 u1 u5 u3 u4 u4 u3 u2 utpclk utpb txenb 1 2 soc 5 txclav phsel n 3 4 5 u1 u1 u5 u5 u2 u4 u3
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 67 fec electrical characteristics 13 fec electrical characteristics this section provides the ac electrical specifications for the fast ethernet controller (fec). note that the timing specifications for the mii signals are i ndependent of system clock frequency (part speed designation). also, mii signals use tt l signal levels compatible with de vices operating at either 5.0 v or 3.3 v. 13.1 mii receive signal timing (mii_rxd[3:0], mii_rx_dv, mii_rx_er, mii_rx_clk) the receiver functions correctly up to a mii_rx_clk maximum frequency of 25 mhz + 1%. there is no minimum frequency requirement. in addition, th e processor clock frequency must exceed the mii_rx_clk frequency ? 1%. table 29 provides information on the mii receive signal timing. figure 72 shows mii receive signal timing. figure 72. mii receive signal timing diagram table 29. mii receive signal timing num characteristic min max unit m1 mii_rxd[3:0], mii_rx_dv, mii_rx_er to mii_rx_clk setup 5 ? ns m2 mii_rx_clk to mii_rxd[3:0], mii_rx_dv, mii_rx_er hold 5 ? ns m3 mii_rx_clk pulse width high 35% 65% mii_rx_clk period m4 mii_rx_clk pulse width low 35% 65% mii_rx_clk period m1 m2 mii_rx_clk (input) mii_rxd[3:0] (inputs) mii_rx_dv mii_rx_er m3 m4
mpc860 powerquicc? family hardware specifications, rev. 8 68 freescale semiconductor fec electrical characteristics 13.2 mii transmit signal timing (mii_txd[3:0], mii_tx_en, mii_tx_er, mii_tx_clk) the transmitter functions correctly up to a mii_tx_clk maximum frequency of 25 mhz +1%. there is no minimum frequency requirement. in addition, th e processor clock frequency must exceed the mii_tx_clk frequency ? 1%. table 30 provides information on the mii transmit signal timing. figure 73 shows the mii transmit signal timing diagram. figure 73. mii transmit signal timing diagram table 30. mii transmit signal timing num characteristic min max unit m5 mii_tx_clk to mii_txd[3:0], mii_tx_en, mii_tx_er invalid 5 ? ns m6 mii_tx_clk to mii_txd[3:0], mii_tx_en, mii_tx_er valid ? 25 m7 mii_tx_clk pulse width high 35 65% mii_tx_clk period m8 mii_tx_clk pulse width low 35% 65% mii_tx_clk period m6 mii_tx_clk (input) mii_txd[3:0] (outputs) mii_tx_en mii_tx_er m5 m7 m8 rmii_refclk
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 69 fec electrical characteristics 13.3 mii async inputs signal timing (mii_crs, mii_col) table 31 provides information on the mii async inputs signal timing. figure 74 shows the mii asynchronous inputs signal timing diagram. figure 74. mii async inputs timing diagram 13.4 mii serial management channel timing (mii_mdio, mii_mdc) table 32 provides information on the mii serial manage ment channel signal timing. the fec functions correctly with a maximum mdc frequency in excess of 2.5 mhz. the exact upper bound is under investigation. table 31. mii async inputs signal timing num characteristic min max unit m9 mii_crs, mii_col minimum pulse width 1.5 ? mii_tx_clk period table 32. mii serial management channel timing num characteristic min max unit m10 mii_mdc falling edge to mii_mdio output invalid (minimum propagation delay) 0? ns m11 mii_mdc falling edge to mii_mdio output valid (max prop delay) ? 25 ns m12 mii_mdio (input) to mii_mdc rising edge setup 10 ? ns m13 mii_mdio (input) to mii_mdc rising edge hold 0 ? ns m14 mii_mdc pulse width high 40% 60% mii_mdc period m15 mii_mdc pulse width low 40% 60% mii_mdc period mii_crs, mii_col m9
mpc860 powerquicc? family hardware specifications, rev. 8 70 freescale semiconductor mechanical data and ordering information figure 75 shows the mii serial management channel timing diagram. figure 75. mii serial management channel timing diagram 14 mechanical data and ordering information table 33 provides information on the mpc860 revision d.4 derivative devices. table 33. mpc860 family revision d.4 derivatives device number of sccs 1 1 serial communications controller (scc) ethernet support 2 (mbps) 2 up to 4 channels at 40 mhz or 2 channels at 25 mhz multichannel hdlc support atm support mpc855t 1 10/100 yes yes mpc860de 2 10 n/a n/a mpc860dt 10/100 yes yes mpc860dp 10/100 yes yes mpc860en 4 10 n/a n/a mpc860sr 10 yes yes mpc860t 10/100 yes yes mpc860p 10/100 yes yes m11 mii_mdc (output) mii_mdio (output) m12 m13 mii_mdio (input) m10 m14 mm15
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 71 mechanical data and ordering information table 34 identifies the packages and operating frequencies available for the mpc860. table 34. mpc860 family package/frequency availability package type freq. (mhz) / temp. (tj) package order number ball grid array zp suffix?leaded zq suffix?leaded vr suffix?lead-free are available as needed 50 0 to 95 c zp/zq 1 mpc855tzq50d4 mpc860dezq50d4 mpc860dtzq50d4 mpc860enzq50d4 mpc860srzq50d4 mpc860tzq50d4 mpc860dpzq50d4 mpc860pzq50d4 tape and reel mpc855tzq50d4r2 mpc860dezq50d4r2 mpc860enzq50d4r2 mpc860srzq50d4r2 mpc860tzq50d4r2 mpc860dpzq50d4r2 sample kmpc855tzq50d4 kmpc860dezq50d4 kmpc860dtzq50d4 kmpc860tzq50d4 kmpc860srzq50d4 66 0 to 95 c zp/zq 1 mpc855tzq66d4 mpc860dezq66d4 mpc860dtzq66d4 mpc860enzq66d4 mpc860srzq66d4 mpc860tzq66d4 mpc860dpzq66d4 mpc860pzq66d4 tape and reel mpc860srzq66d4r2 mpc860pzq66d4r2 sample kmpc855tzq66d4 kmpc860srzq66d4 kmpc860tzq66d4 kmpc860enzq66d4 kmpc860pzq66d4 80 0 to 95 c zp/zq 1 mpc855tzq80d4 mpc860dezq80d4 mpc860dtzq80d4 mpc860enzq80d4 mpc860srzq80d4 mpc860tzq80d4 mpc860dpzq80d4 mpc860pzq80d4 tape and reel MPC860PZQ80D4R2
mpc860 powerquicc? family hardware specifications, rev. 8 72 freescale semiconductor mechanical data and ordering information sample kmpc855tzq80d4 kmpc860dezq80d4 kmpc860dtzq80d4 kmpc860enzq80d4 kmpc860srzq80d4 kmpc860tzq80d4 kmpc860dpzq80d4 kmpc860pzq80d4 ball grid array (czp suffix) czp suffix?leaded czq suffix?leaded cvr suffix?lead-free are available as needed 50 ?40 to 95 c zp/zq 1 mpc855tczq50d4 mpc860deczq50d4 mpc860dtczq50d4 mpc860enczq50d4 mpc860srczq50d4 mpc860tczq50d4 mpc860dpczq50d4 mpc860pczq50d4 tape and reel mpc855tczq50d4r2 66 ?40 to 95 c zp/zq 1 mpc855tczq66d4 mpc860enczq66d4 mpc860srczq66d4 mpc860tczq66d4 mpc860dpczq66d4 mpc860pczq66d4 1 the zp package is no longer recommended for use. the zq package replaces the zp package. table 34. mpc860 family package/frequency availability (continued) package type freq. (mhz) / temp. (tj) package order number
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 73 mechanical data and ordering information 14.1 pin assignments figure 76 shows the top view pinout of the pbga pack age. for additional information, see the mpc860 powerquicc user?s manual , or the mpc855t user?s manual . note: this is the top view of the device. figure 76. pinout of the pbga package pd3 irq7 d0 d4 d1 d2 d3 d5 vddl d6 d7 d29 clkout ipa3 dp2 a2 a7 a14 a27 a29 a30 a28 a31 vddl bsa2 we1 we3 ce2a cs1 cs4 a5 a11 18 16 14 13 12 11 10 9 8 7 6 5 3 2 4 17 15 1 19 a1 a6 a13 a17 a21 a23 a22 tsiz0 bsa3 m_crs we2 gpla2 ce1a wr cs5 a4 a10 gplb4 a0 pa15 a3 a12 a16 a20 a24 a26 tsiz1 bsa1 we0 gpla1 gpla3 cs0 ta cs7 pb31 a9 gpla4 pb30 pc14 pc15 n/c n/c a15 a19 a25 a18 bsa0 gpla0 n/c cs6 gpla5 bdip cs2 pa 1 4 a 8 tea pb28 pc13 pb29 vddh vddh bi bg cs3 pa 1 3 bb pb27 pc12 vddl gnd gnd ts irq3 vddl pa 1 2 burst pb26 tms pa11 irq6 ipb4 br tdo ipb3 trst m_mdio tck irq2 ipb0 m_col tdi ipb7 vddl pb24 pb25 ipb1 ipb2 ipb5 pa 1 0 aleb pc11 pa9 pb21 gnd ipb6 alea baddr30 pb23 irq4 pc10 pc9 pb20 as op1 op0 pa 8 modck1 pb22 pc8 pc7 baddr28 baddr29 modck2 pa 6 vddl pa 7 pa 5 p b 1 6 texp extclk hreset pb18 extal pb19 pb17 vddl gnd rstconf sreset vddl pa 3 g n d xtal pa 4 pa 2 p d 1 2 vddh wait _a poreset wait _b pb15 vddh kapwr pc6 pc5 pd11 vddh d12 d17 d9 d15 d22 d25 d31 ipa6 ipa0 ipa7 xfc ipa1 pc4 pd7 vddsyn pa 1 pb14 pd4 irq1 d8 d23 d11 d16 d19 d21 d26 d30 ipa5 ipa2 n/c ipa4 pd15 pd5 vsssyn pa 0 pd13 pd6 irq0 d13 d27 d10 d14 d18 d20 d24 d28 dp1 dp0 n/c dp3 pd9 m_tx_en vsssyn1 pd14 b a c d e f g h j k l m n p r t u v w pd10 pd8
mpc860 powerquicc? family hardware specifications, rev. 8 74 freescale semiconductor mechanical data and ordering information 14.2 mechanical dimensions of the pbga package figure 77 shows the mechanical dimensions of the zp pbga package. figure 77. mechanical dimensions and bottom surface nomenclature of the zp pbga package w v u t r p n m l k j h g f e d c b a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 side view bottom view 18x 4x 357x b top view a2 a3 e 0.3 m c d a a1 d2 0.15 m c e e2 0.2 c a b 0.2 d1 e1 ab 0.25 c 0.35 c c note 1. dimensions and tolerance per asme y14.5m, 1994. 2. dimensions in millimeters. 3. dimension b is the maximum solder ball diameter measured parallel to data c. dim min max millimeters a --- 2.05 0.50 0.70 a2 0.95 1.35 a3 0.70 0.90 b 0.60 0.90 d 25.00 bsc d1 22.86 bsc d2 22.40 22.60 e 1.27 bsc e 25.00 bsc e1 22.86 bsc e2 22.40 22.60 a1
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 75 mechanical data and ordering information figure 78 shows the mechanical dimensions of the zq pbga package. figure 78. mechanical dimensions and bottom surface nomenclature of the zq pbga package note 1. all dimensions in millimeters. 2. dimensions and tolerance per asme y14.5m, 1994. 3. maximum solder ball diameter measured parallel to datum a. 4. datum a, the seating plane, is defined by the spherical crowns of the solder balls.
mpc860 powerquicc? family hardware specifications, rev. 8 76 freescale semiconductor document revision history 15 document revision history table 35 lists significant changes between revisions of this hardware specification. table 35. document revision history revision date changes 5.1 11/2001 ? revised template format, removed references to mac functionality, changed ta ble 7 b23 max value @ 66 mhz from 2ns to 8ns, added this revision history table 6 10/2002 ? added the mpc855t. corrected figure 26 on page -36 . 6.1 11/2002 ? corrected utopia rxenb* and txenb* timing values ? changed incorrect usage of vcc to vdd ? corrected dual port ram to 8 kbytes 6.2 8/2003 ? changed b28a through b28d and b29d to show that trlx can be 0 or 1 ? changed reference documentation to reflect the rev 2 mpc860 powerquicc family users manual ? nontechnical reformatting 6.3 9/2003 ? ?added section 11.2 on the port c interrupt pins ? ?nontechnical reformatting 7.0 9/2004 ? added a tablefootnote to ta b l e 6 dc electrical specifications about meeting the vil max of the i2c standard ? replaced the thermal characteristics in ta b l e 4 by the zq package ? add the new parts to the ordering and availablity chart in ta b l e 3 4 ? added the mechanical spec of the zq package in figure 78 ? removed all of the old revisions from ta b l e 5 8 08/2007 ? updated template. ? on page 1, added a second paragraph. ? after table 2, inserted a new figure showing the undershoot/overshoot voltage ( figure 1 ) and renumbered the rest of the figures. ?in figure 3 , changed all reference voltage measurement points from 0.2 and 0.8 v to 50% level. ?in ta b l e 1 6 , changed num 46 description to read, ?ta assertion to rising edge ...? ?in figure 46 , changed ta to reflect the rising edge of the clock.
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 77 document revision history this page intentionally left blank
mpc860 powerquicc? family hardware specifications, rev. 8 78 freescale semiconductor document revision history this page intentionally left blank
mpc860 powerquicc? family hardware specifications, rev. 8 freescale semiconductor 79 document revision history this page intentionally left blank
document number: mpc860ec rev. 8 08/2007 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters which may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1-8-1, shimo-meguro, meguro-ku tokyo 153-0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 +1-800 441-2447 or +1-303-675-2140 fax: +1-303-675-2150 ldcforfreescalesemiconductor @hibbertgroup.com freescale? and the freescale logo are trademarks of freescale semiconductor, inc. the power architecture and power.org word marks and the power and power.org logos and related marks are trademarks and service marks licensed by power.org. ieee 802.3, 802.3u, and 1149.1 are trademarks or registered trademarks of the institute of electrical and electronics engineers, inc. (ieee). this product is not endorsed or approved by the ieee. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc., 2001?2007. all rights reserved.
contact us worldwide: united states products applications technologies support buy freescale search refine your results show: sub topics device type industry ? related links download newly introduced parts (200kb) download phased out parts (250kb) samples faq request for a sample order advice looking for discussion forums search mpc855tvr50d4 help results 2 - mpc855tvr50d4 remove | results refined by?:?resources > orderable parts mpc855tvr50d4 mpc855tvr50d4r2 ? orderable parts part number ? ? datasheet/ part data order expand all expand all www.freescale.com site map terms of use privacy practices newsletter view agreement rss feeds ? page 1 of 1 freescale search 12/1/2008 http://www.freescale.com/webapp/search/mainserp.jsp?selectedasset=orderable%20parts


▲Up To Search▲   

 
Price & Availability of MPC860PZQ80D4R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X